CANCELLATION PROPERTIES IN IDEAL SYSTEMS: A CLASSIFICATION OF e.a.b. SEMISTAR OPERATIONS
نویسندگان
چکیده
We give a classification of e.a.b. semistar (and star) operations by defining four different (successively smaller) distinguished classes. Then, using a standard notion of equivalence of semistar (and star) operations to partition the collection of all e.a.b. semistar (or star) operations, we show that there is exactly one operation of finite type in each equivalence class and that this operation has a range of nice properties. We give examples to demonstrate that the four classes of e.a.b. semistar (or star) operations we defined can all be distinct. In particular, we solve the open problem of showing that a.b. is really a stronger condition than e.a.b.
منابع مشابه
A Note on the Cancellation Properties of Semistar Operations
If D is an integral domain with quotient field K, then let F̄(D) be the set of non-zero D-submodules of K, F(D) be the set of non-zero fractional ideals of D and f(D) be the set of non-zero finitely generated D-submodules of K. A semistar operation ? on D is called arithmetisch brauchbar (or a.b.) if, for every H ∈ f(D) and every H1, H2 ∈ F̄(D), (HH1) ? = (HH2) ? implies H 1 = H ? 2 , and ? is ca...
متن کاملLocal–global Properties for Semistar Operations
We study the “local” behavior of several relevant properties concerning semistar operations, like finite type, stable, spectral, e.a.b. and a.b. We deal with the “global” problem of building a new semistar operation on a given integral domain, by “gluing” a given homogeneous family of semistar operations defined on a set of localizations. We apply these results for studying the local–global beh...
متن کاملNagata Rings, Kronecker Function Rings and Related Semistar Operations
In 1994, Matsuda and Okabe introduced the notion of semistar operation. This concept extends the classical concept of star operation (cf. for instance, Gilmer’s book [20]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer and P. Lorenzen from 1930’s. In [17] and [18] the current authors investigated properties of the Kronecker functi...
متن کاملUppers to Zero and Semistar Operations in Polynomial Rings
Given a stable semistar operation of finite type ⋆ on an integral domain D, we show that it is possible to define in a canonical way a stable semistar operation of finite type [⋆] on the polynomial ring D[X], such that D is a ⋆-quasi-Prüfer domain if and only if each upper to zero in D[X] is a quasi-[⋆]-maximal ideal. This result completes the investigation initiated by Houston-Malik-Mott [18, ...
متن کاملSemistar dimension of polynomial rings and Prufer-like domains
Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...
متن کامل